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Abstract 

We compare the climate feedbacks in coupled ocean-atmosphere models using a coordinated set 

of 21st century climate change experiments. Water vapor is found to provide the largest positive 

feedback in all models and its strength is consistent with that expected from constant relative 

humidity changes in water vapor mixing ratio. The feedbacks from clouds and surface albedo 

are also found to be positive in all models, while the only stabilizing (negative) feedback comes 

from the temperature response. Large intermodel differences in the lapse-rate feedback are 

observed and shown to be associated with differing regional patterns of surface warming. 

Consistent with previous studies, we find the vertical changes in temperature and water vapor to 

be tightly coupled in all models and, importantly, demonstrate that intermodel differences in the 

sum of lapse-rate and water vapor feedbacks are small. In contrast, intermodel differences in 

cloud feedback are found to provide the largest source of uncertainty in current predictions of 

climate sensitivity.  
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Introduction 

 Climate models exhibit a large range of sensitivities in response to increased greenhouse 

gases due to differences in feedback processes which amplify or damp the initial radiative 

perturbation (Cubasch and Cess, 1990). Although the analysis and validation of these feedbacks 

are crucial tasks in climate change research, there has never been a coordinated assessment of 

climate feedbacks in models used for global warming projections. As a result, the relative 

magnitude of different feedback processes and their contributions to the range of climate 

sensitivities remain uncertain.  

 Differences in cloud feedbacks have typically been thought of as the major source of 

discrepancy in model sensitivity estimates, based in large part on a prominent analysis of the 

response of models to a uniform increase in surface temperature (Cess et al. 1990, 1996). This 

analysis revealed agreement among the models’ clear-sky radiative flux response, but much 

larger discrepancies in their total-sky response, implicating clouds as key contributors to the 

uncertainty in climate sensitivity. However, as noted in these studies, uniform perturbations in 

temperature are not representative of realistic climate-change conditions and can alter the 

magnitude and ranking of climate feedback strengths (Senior and Mitchell 1993). The 

simulations were also performed using perpetual July conditions to intentionally suppress the 

surface albedo feedback. In addition, the cloud forcing method of feedback assessment aliases 

non-cloud feedbacks into the cloud forcing term; thus scatter in the cloud forcing response can 

partially result from differences in the total-sky components of the other feedback variables 

(Zhang et al. 1996, Colman 1997 and McAvaney, Colman 2003, Soden et al. 2004).  

 The feedback strengths from various mixed-layer GCMs forced with increasing CO2 have 

been computed in prior studies. A review of these calculations by Colman (2003) revealed, 
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surprisingly, that intermodel differences in the reported feedbacks for clouds, water vapor, lapse-

rate and surface albedo were roughly equal in magnitude (Figure 1). However, as emphasized by 

Colman, differences in the methodology used to compute feedbacks between various modeling 

groups could bias the reported feedbacks. Moreover, the survey by Colman considers only those 

models for which published feedback calculations are available and, as noted by Colman, many 

of those models were quite old. As a result, the true contribution of various feedback processes to 

the range in climate model sensitivity remains uncertain, particularly for the current generation 

of models.  

 Here we apply a consistent methodology to compare feedback strengths in a large group of 

coupled ocean-atmosphere models using a coordinated set of 21st century climate change 

experiments generated for the upcoming 4th Assessment of the Intergovernmental Panel on 

Climate Change (2).  

 

Methodology 

 Feedback calculations are performed for climate change simulations from 14 different 

coupled ocean-atmosphere models integrated with projected increases in well-mixed greenhouse 

gases and aerosols as prescribed by the IPCC SRES A1B scenario (Table 1). This scenario 

corresponds roughly to a doubling in equivalent CO2 between 2000 and 2100, after which time 

the radiative forcings are held constant. The estimated radiative forcing (the change in the global 

mean net radiative flux at the tropopause holding all other inputs to the radiative transfer fixed) 

under this scenario is 4.3 W/m2 (IPCC TAR Table 6.14 and 6.15). The uncertainty in forcings is 

estimated to be ~10% for the period 1750-2000 (IPCC TAR, p. 351), which includes uncertainty 

in the forcing given the concentrations as well as uncertainty in the historical concentrations of 
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the forcing agents themselves.  The uncertainty in projected forcings for 2000-2100 given the 

SRES A1B assumptions is presumably smaller since the concentrations of dominant forcing 

agents are specified.  Unfortunately, the data required for directly comparing model forcings are 

not yet available.  

 We define feedbacks in terms of the change in global mean surface temperature (Ts) and the 

change in  radiative flux at the top of the atmosphere (R). Feedbacks arise from changes in water 

vapor (w), clouds (C), surface albedo (α) and temperature (T). Defining a feedback parameter for 

each variable, we set 
λ
RTs

∆
=∆ , where λ = λT + λC + λw + λα. and the overbar indicates global 

averaging. The temperature feedback can be split further as λT = λ0 + λL, where λ0 assumes that 

the temperature change is uniform throughout the troposphere and λL (lapse rate feedback) is the 

modification due to non-uniformity of the temperature change.   

 Following Held and Soden (2000), we compute the feedbacks as products of two terms, one 

dependent on the radiative transfer, and another on the climatic response: 
s

X Td
dx

x
R

∂
∂

=λ .  From 

the available data we are only able to compute the latter, and use a particular model for the 

former (GAMDT, 2004), assuming that uncertainties in the radiative algorithms, and in the 

distribution of radiatively active constituents in the control simulations, are small compared to 

the differences in model responses. Ongoing comparison of the radiative transfer component 

from a small subset of these models supports this assumption and indicates that we are omitting 

differences of the order of 10%, which would not impact our conclusions.  

 The model response for each variable x is computed by differencing the projected climate of 

years (2000-2010) from that of (2100-2110); )20102000()21102100(

)20102000()21102100(

−−

−−

−
−

=
sss TT

xx
Td

dx . The response is 
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then scaled by the appropriate radiative adjoint (
x
RK X ∂

∂
= ) to yield the climate feedback 

parameter for that variable, 
s

XX Td
dxK=λ , where both Kx and dx are functions of latitude, 

longitude, altitude and monthly-resolved season. Each λx is then vertically-integrated from the 

surface to the tropopause (defined as 100mb at the equator and increasing linearly with latitude 

to 300mb at the poles) and globally-averaged to yield global feedback parameters.  

 Thus, we perturb only the tropospheric state in the feedback computation, but we examine 

the response of TOA fluxes, rather than the tropopause fluxes, to these perturbations  It can be 

shown that this is equivalent to assuming that the net dynamical heating of the stratosphere is 

unchanged, and that we can ignore the response of stratospheric temperatures to the change in 

tropospheric temperature, water, and clouds.   In our experience, it is preferable to make these 

simplifications rather than attempt to define changes in GCM fluxes at the tropopause; the latter 

are sensitive to arbitrariness in the definition of the tropopause and to the movement of the 

tropopause as climate changes. 

 To compute Kx, we first calculate the control TOA radiative fluxes using 3-hourly values of 

temperature, water vapor, cloud properties and surface albedo from a control simulation of the 

GFDL GCM. For each level k, the temperature is increased by 1 K and the resulting change in 

TOA fluxes determines
kT

R
∂
∂ . Similarly, 

kw
R

∂
∂ is computed by perturbing the water vapor in each 

layer by holding relative humidity constant and increasing the temperature used to compute the 

saturation mixing ratio by 1 K. For 
α∂

∂R , a 1% decrease in surface albedo is used to compute the 

TOA flux perturbation. Figure 2 displays the zonal-mean, annual-mean distribution of Kx for 

temperature, water vapor, and surface albedo. The reader is referred to Held and Soden (2000) 
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for further discussion of this method and interpretation of the spatial structure of the feedback 

kernels. 

 Using this method, we compute the climate feedbacks (λx) for water vapor, temperature and 

surface albedo. Due to nonlinearities in the calculation of Kx arising from changes in the vertical 

overlap of clouds, λc is computed as the residual difference between the effective climate 

sensitivity (λeff) and the sum of the other feedbacks. That is, λc= λeff - (λT + λw+ λα), where 

s
eff T

RG
∆

∆+
=λ  (Murphy, 1995), sT∆  is the change in surface air temperature between the years 

(2000-2010) and (2100-2110) of the model integration. The radiative forcing for the SRES A1B 

scenario is estimated to be G  = 4.3 W/m2.with an uncertainty of 10% (IPCC TAR, Table 6.14). 

The strength of this approach is that it provides a consistent and economical method of 

intercomparing feedbacks among different models. Therefore, intermodel differences in climate 

feedbacks arise solely from differences in their climate response and not from differences in 

methodology. The weakness of this approach is that cloud feddback is not computed directly but 

only as a residual. 

 As verification of this strategy, we have compared the feedbacks estimated from this method 

with those derived using the traditional approach in which the partial radiative perturbation for 

each feedback variable is computed using offline radiative transfer calculations (Wetherald and 

Manabe 1988; Colman 2001). These results indicate that, for the GFDL GCM the water vapor, 

temperature and surface albedo feedbacks computed using the feedback kernels (Kx) agree with 

those computed using the partial radiative perturbation method to within ~5%. Computation of 

the feedbacks using an alternative model’s Kx alters the feedback strengths by < 10%.  

 Because cloud feedback is computed as a residual term, it is affected by two sources of error: 
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1) uncertainties in the estimation of other feedbacks; and 2) uncertainties in the estimate of the 

effective climate sensitivity which, in turn, depends upon errors in the estimated radiative 

forcing. To estimate the first source of error, we have examined climate change experiments 

using specified SST perturbations (Soden et al. 2004) enabling the component of error in the 

cloud feedback residual which arises solely from the use of the kernels to be directly compared 

with that obtained from a partial radiative perturbation analysis of the same experiment. This 

comparison suggested errors of ~0.1 W/m2/K. Since the radiative forcing calculations are not 

available for the IPCC model simulations, we assume a radiative forcing for the SRES A1B 

scenario of G  = 4.3 W/m2 with an uncertainty of +/- 10% (IPCC, TAR). For sT∆  ~2K, this 

corresponds to an uncertainty in λeff of ~0.2 W/m2/K and likely represents the largest source of 

uncertainty in the cloud feedback estimate. Assuming that these two sources of error are 

uncorrelated, the total error is estimated to be the root of their squared sums: ~0.22 W/m2/K or 

~10%. The uncertainty estimates for all feedback variables are plotted as error bars in Figure 1.  

 

Results 

 Figure 1 shows our estimates of the climate feedback parameters for lapse-rate, water vapor, 

cloud, and surface albedo for each of the IPCC AR4 models for which the necessary data was 

available. The results are also listed in Table 1. The sign convention is such that positive values 

indicate an amplification of the climate change (i.e., a positive feedback). The strength of λ0 

(Table 1) ranges from roughly -3.1 to -3.2 W/m2/K. Intermodel differences in λ0 arise from 

different spatial patterns of warming; models with greater high latitude warming, where the 

temperature is colder, have smaller values of λ0. On average, the strongest positive feedback is 

due to water vapor (1.8 W/m2/K), followed by clouds (0.68 W/m2/K), and surface albedo (0.26 
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W/m2/K). The troposphere warms faster than the surface in all models resulting in a negative 

lapse-rate feedback (-0.84 W/m2/K). The intermodel variability in these feedbacks is addressed 

below.  

 As compared to the survey by Colman, the range of feedback strengths computed here is 

smaller for all feedbacks except clouds. The smaller range noted here could indicate an actual 

reduction in feedback differences in the current generation of models. However, it is more likely 

to result in large part from the lack of a consistent methodology in previous studies. In particular, 

the lapse-rate feedbacks are significantly larger here than in previous results, which may reflect 

the inappropriate inclusion of stratospheric temperature responses in the calculations performed 

by some modeling groups (Colman 2003, Held and Soden 2000). The surface albedo feedbacks 

are somewhat smaller in magnitude compared to those reported by Colman. Both the magnitude 

and intermodel range of surface albedo feedback are consistent to within ~10% of those 

estimated by Winton (2005) for the IPCC AR4 models. 

 Despite the large intermodel differences in water vapor feedback, all models exhibit a nearly 

constant RH behavior for their moisture response. To demonstrate this, we have recomputed the 

water vapor feedback for each model using the simulated temperature response and an 

assumption of fixed relative humidity (r) to compute the change in water vapor mixing ratio  In 

all models, the actual strength of water vapor feedback agrees to within 5% of that computed 

under the assumption of fixed relative humidity (open circles in Figure 1). Interestingly, the true 

feedback is consistently weaker than the constant relative humidity value, implying a small but 

robust reduction in relative humidity in all models on average, as weighted by the water vapor 

kernel.  

 Because all models exhibit a nearly constant RH behavior, most of the scatter in λw stems 
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from differences in the lapse-rate response between models rather than from diverging responses 

of the relative humidity field. That is, models with a larger tropospheric warming (more negative 

lapse-rate feedback) also have a larger tropospheric moistening (more positive water vapor 

feedback) and, as noted by Colman, intermodel differences in water vapor and lapse rate 

feedbacks largely offset each other (Figure 3a). Because temperature and water vapor changes 

are so tightly coupled in models, it is logical to consider the combined lapse-rate plus water 

vapor feedback, rather than each term individually (Held and Soden 2000). This combined 

feedback is slightly larger in magnitude (0.95) than the cloud feedback and the intermodel range 

is significantly diminished. (Figure 1).  

 The range in lapse-rate feedbacks between models, in turn, stems from different meridional 

patterns of surface warming. Models with relatively larger warming at low latitudes have a 

greater reduction in lapse-rate and thus a larger (more negative) lapse rate feedback (Figure 3b). 

This behavior reflects the weaker coupling of the surface to the free troposphere at high latitudes 

compared to low latitudes where the model-simulated temperature response closely follows a 

moist-adiabat regardless of the convection scheme (Santer et al., 2005). 

 Keeping in mind the limitations of computing cloud feedbacks as a residual, and the lack of 

precise information on radiative forcing in the models, our results are consistent with differences 

in cloud feedbacks being the largest contributor to intermodel differences in climate 

sensitivity(Figure 1). The standard deviation in cloud feedback (0.37) is roughly 4 times larger 

than for the combined lapse-rate plus water vapor (0.10) or surface albedo (0.08) feedbacks.  

Stated differently, our direct estimates of water vapor, lapse rate, and albedo feedbacks fall far 

short of explaining the intermodel differences in the magnitude of global mean warming.  This 

conclusion is consistent with early studies which suggested that cloud feedback is the largest 
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uncertainty in model projections of global warming (Cess et al., 1990, 1996).  

 One may ask whether the reduced range of water vapor and lapse-rate feedbacks noted for 

the IPCC AR4 models represents a convergence of model physics or simply the use of a common 

methodology for quantifying the feedbacks. To examine this, we have also computed these 

feedbacks using output from the Coupled Model Intercomparison Project II (CMIP II; see www-

pcmdi.llnl.gov/cmip), in which many of the models that contributed to the Third IPCC 

Assesment participated. The results, listed in Table 2, show that the range of water vapor and 

lapse rate feedbacks in the previous generation of CMIP II models (λwv=1.5 to 2.1, λL =-0.42 to -

1.48) is similar to that found in the IPCC AR4 models (λwv =1.5 to 2.2, λL =-0.41 to -1.27). The 

range of combined λwv+λL feedbacks is 0.75 to 1.26 in CMIP II and 0.81 to 1.20 in IPCC AR4. 

This suggests that the relatively large range of lapse-rate and water vapor feedbacks found 

previously in the literature likely results from differences in feedback methodology between the 

various modeling groups.  

 Finally, it is worth noting that while all models have a positive cloud feedback, roughly half 

of the models (for which total-sky and clear-sky fluxes are available) exhibit a reduction in net 

radiative cloud forcing in response to the warmer climate (Figure 4b). A similar range in the 

distribution of cloud feedback responses was noted by Cess et al. (1990, 1996). This apparent 

discrepancy arises from the effects of non-cloud feedbacks on the cloud forcing term (Zhang et 

al. 1994; Colman 2003; Soden et al. 2004). Thus the change in cloud forcing is not a reliable 

measure of the sign or absolute magnitude of cloud feedback. Note however, that the change in 

net cloud radiative forcing is well correlated with the cloud feedback, indicating that intermodel 

differences in the change in cloud forcing can be used as a surrogate for intermodel differences 

in cloud feedback. The correlation between the cloud feedback and the independent cloud 
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forcing model output is also indirect evidence that the residual computation of the former is 

meaningful.   

 

Summary 

 Progress in reducing uncertainties in model predictions of climate sensitivity requires an 

accurate assessment of the differences in various feedback strengths between models. However, 

because calculation of model feedbacks can be both time-consuming and computationally-

demanding, it has been difficult to get a reliable comparison of the strength of climate feedbacks 

between models. Here we assessed the strength of model feedbacks using a consistent method 

which has been applied to an existing model archive of 21st century climate change experiments 

performed for the IPCC 4th Assessment.  

 This analysis confirms two widely-held beliefs about the behavior of climate feedbacks in 

models: i) that water vapor provides the largest positive feedback and that the strength of this 

feedback can be estimated assuming constant relative humidity in all models; and ii) that clouds 

provide the largest source of uncertainty in current model predictions of climate sensitivity. This 

work also identifies some less well recognized aspects of climate feedbacks: i) that clouds appear 

to provide a positive feedback in all models; and ii) that intermodel differences in lapse-rate 

response stem primarily from differences in the meridional distribution of surface warming, with 

these differences in turn responsible for much of the intermodel spread in water vapor feedback.     

 While the methodology developed here can not identify which cloud types are most 

responsible for the discrepancies in cloud feedback, recent analyses of the changes in cloud 

radiative forcing from the IPCC AR4 simulations (Bony and DuFresne 2005) and from the Cloud 

Forcing Model Intercomparison Project (Webb et al. 2005) point to low cloud cover as a primary 
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culprit. Our results further indicate that while the change in cloud forcing may not accurately 

represent the sign or magnitude of cloud feedback, it does provide a useful metric for assessing 

intermodel differences in cloud feedback.  
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Figure Captions: 

 Figure 1: Comparison of the climate feedback parameters for water vapor (λw), lapse rate (λT), 

the combined water vapor + lapse rate, surface albedo (λa), and clouds (λc) in units of W/m2/K. 

All represents the combined feedback from water vapor, lapse rate, surface albedo and clouds. 

Filled circles represent results from this study using the IPCC AR4 model archive. Crosses are 

previously published results taken from the survey of Colman (2003). Open circles for water 

vapor represent the water vapor feedback computed for each of the IPCC AR4 models assuming 

no change in relative humidity. Vertical bars depict the estimated uncertainty in the calculation 

of the feedbacks for each parameter (see text for details).  

Figure 2. The zonal-mean, annual-mean distribution of the feedback kernels Kx for temperature 

(top), water vapor (middle) and surface albedo (bottom). The units of the temperature and water 

vapor kernels are W/m2/K/100mb and the units of the surface albedo kernel is W/m2/%.  

Figure 3. Left: The water vapor feedback (λw) for each of the 14 models plotted as a function of 

the lapse rate feedback parameter (λL). Right: The lapse rate feedback parameter plotted as a 

function of the ratio of the change in tropical-mean (30N-30S) surface temperature to global-

mean (90N-90S) surface temperature. Models with greater tropical warming have a larger (more 

negative) lapse rate feedback.  

Figure 4. Left: The effective sensitivity (λeff) for each of the 14 models plotted as a function of 

the cloud feedback parameter (λc). Right: The cloud feedback parameter plotted as a function of 

the change in global-mean net cloud radiative forcing per degree change in global surface 

temperature. Only models for which both clear sky and total sky fluxes were available are 

shown. 
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Figure 2. The zonal-mean, annual-mean distribution of the feedback kernels Kx for temperature 

(top), water vapor (middle) and surface albedo (bottom). The units of the temperature and water 
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Figure 3. Left: The water vapor feedback (λw) for each of the 14 models plotted as a function of 

the lapse rate feedback parameter (λL). Right: The lapse rate feedback parameter plotted as a 

function of the ratio of the change in tropical-mean (30N-30S) surface temperature to global-

mean (90N-90S) surface temperature. Models with greater tropical warming have a larger (more 

negative) lapse rate feedback.  

 

 



 19

 

 

Figure 4. Left: The effective sensitivity (λeff) for each of the 14 models plotted as a function of 

the cloud feedback parameter (λc). Right: The cloud feedback parameter plotted as a function of 

the change in global-mean net cloud radiative forcing per degree change in global surface 

temperature. Only models for which both clear sky and total sky fluxes were available are 

shown. 
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 Planck Lapse 

Rate 

Water 

Vapor

Surface 

Albedo

Effective 

Sensitivity

Cloud 

Feedback 

CNRM -3.21 -0.89 1.83 0.31 -1.17 0.79 

GFDL 

CM2_0 

-3.20 -0.85 1.87 0.33 -1.18 0.67 

GFDL 

CM2_1 

-3.24 -1.12 1.97 0.21 -1.37 0.81 

GISS 

AOM 

-3.25 -1.27 2.14 0.27   

GISS EH -3.26 -1.12 1.99 0.07   

GISS ER -3.24 -1.05 1.86 0.15 -1.64 0.65 

INMCM3 -3.18 -0.51 1.56 0.32 -1.46 0.35 

IPSL -3.24 -0.84 1.83 0.22 -0.98 1.06 

MIROC 

MEDRES 

-3.20 -0.75 1.64 0.31 -0.91 1.09 

MRI -3.21 -0.65 1.85 0.27 -1.50 0.24 

MPI 

ECHAM5 

-3.22 -1.03 1.90 0.29 -0.88 1.18 

NCAR 

CCSM3 

-3.17 -0.54 1.60 0.34 -1.62 0.14 

NCAR 

PCM1 

-3.13 -0.41 1.48 0.34 -1.53 0.18 

UKMO 

HADCM3 

-3.20 -0.74 1.67 0.22 -0.97 1.08 

 

Table 1: Tabulated values of the feedback parameters shown in Figure 1. Model integrations for 

the GISS AOM and GISS EH models end at year 2100 and therefore estimates of the effective 

sensitivity and cloud feedback are not performed.  
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 Planck Lapse 

Rate 

Water 

Vapor

CCCM -3.18 -0.51 1.61 

CSIR -3.24 -0.42 1.68 

CSM -3.21 -0.76 1.62 

GFDL -3.25 -0. 62 1.73 

ECHO -3.28 -1.48 2.23 

ECHAM -3.23 -1.36 2.20 

HAD2 -3.25 -1.15 1.83 

HAD3 -3.21 -0.75 1.51 

MRI -3.24 -1.00 2.09 

PCM -3.16 -0.66 1.62 

 

Table 2: Tabulated values of the feedback parameters from the CMIP II model archive. The data 

required for computing the surface albedo feedback was not available from the archive. 


